228. Synthesis of Cyclosporine. I. Synthesis ${ }^{1}$) of Enantiomerically Pure ($2 S, 3 R, 4 R, 6 E$)-3-Hydroxy-4-methyl-2-methylamino-6-octenoic Acid Starting from Tartaric Acid

by Roland M. Wenger
Preclinical Research Department, Sandoz Ltd., CH-4002 Basle, Switzerland

(28.VII.83)

Summary

Starting from $R, R-(+)$-tartaric acid, the synthesis of $(2 S, 3 R, 4 R, 6 E)$-3-hydroxy-4-methyl-2-methylamino-6-octenoic acid in 24 steps is reported. This novel amino acid is found in the cyclic undecapeptide cyclosporin A , isolated from the fungal strain Tolypocladium inflatum gams. Its stereospecific synthesis allowed, for the first time, the isolation and characterization of the new amino acid previously reported as the ' $\mathrm{C}-9$ amino acid' [1].

1. Introduction. - The previously reported C-9-amino acid [I] [2], now also designated as ($4 R$)-4-((E)-2-butenyl)-4, N-dimethyl-L-threonine (MeBmt$\left.)^{2}\right)^{3}$), was the only unknown amino acid in cyclosporine ${ }^{4}$), and there had previously been no means for its isolation. For this reason and because it is possible that this amino acid could play a significant role in determining the pharmacological activity of cyclosporine, the synthesis of this amino acid in enantiomerically pure form was initiated.

In the ($4 R$)-4-butenyl-4- N-dimethyl-threonine $\mathbf{2 5}$ (MeBmt, in a simplified staggered projection (i) and in a Fischer projection (ii), MeNH- and OH-groups are in a threoconfiguration as it is the case in N -methyl-L-threonine (iii) and the OH - and CH_{3} groups in an erythro-configuration; the double bond is trans (E)-configurated. The

[^0]amino acid $\mathbf{2 5}$ is specified as $(2 S, 3 R, 4 R, 6 E)$-3-hydroxy-4-methyl-2-methylamino-6octenoic acid by the Cahn-Ingold-Prelog [4] rules.

The relative and absolute configuration was established by X-ray crystallographic analysis of an iodinated cyclic derivative of cyclosporin $\mathrm{A}[2]$. The (E)-configuration of the double bond is proved by measurement of a coupling constant of 16 Hz between the vinyl protons from the $360-\mathrm{MHz}-\mathrm{NMR}$ spectrum of cyclosporine in $\left(\mathrm{D}_{6}\right)$ benzene [1]. The structural assignments have eventually been confirmed by an X-ray crystallographic analysis of cyclosporine itself [5].
2. Strategy of the Synthesis. $-(R, R)$-(+)-Tartaric acid was used as the basic chiral building block ${ }^{5}$) and modified in three major operations to introduce the features of the butenyl-4, N-dimethyl-threonine 25 . In the first operation, summarized in Scheme 1 , one OH -group of the $(R, R)-(+)$-tartaric acid molecule is incorporated with the correct configuration, and the other OH -group is replaced by a CH_{3}-group accompanied by inversion of configuration. This provides the asymmetric centres $C(3)$ and $C(4)$ of the amino acid 25. The second operation consists of introducing the (E)-butenyl moiety (Scheme 2) and of oxidizing the diol 14 to the hydroxy aldehyde 19 (Scheme 3). In the third operation the MeNH- and the COOH -groups are introduced via a cyclic inter-

Scheme 1. Synthesis of (R, R)-3-Methyl-1,2,4-butanetriol (8)

$\left.\left.{ }^{\text {a }}\right) \mathrm{PhCHO} / \mathrm{HC}(\mathrm{OEt})_{3} / \mathrm{TsOH} .{ }^{\mathrm{b}}\right) \mathrm{LiAlH}_{4},{ }^{\text {c }}$) $\left.\left.\mathrm{BzlBr} / \mathrm{KOH} .{ }^{\text {d }} \mathrm{NBS} .{ }^{\text {e }}\right) \mathrm{KOH} / \mathrm{EtOH} .{ }^{\text {g }}\right) 2 \mathrm{MeLi} / \mathrm{CuI} .{ }^{\text {g }}$) $\mathrm{Pd} / \mathrm{H}_{2}$.

[^1]

$\left.{ }^{\text {a }}\right) \mathrm{Me}_{2} \mathrm{C}(\mathrm{OMc})_{2} / \mathrm{TsOH} / \mathrm{C}_{6} \mathrm{H}_{6}$, reflux, $2 \mathrm{~h} .{ }^{\text {b }}$) Acetone, TsOH, reflux, $15 \mathrm{~h} .{ }^{\text {c }}$) $\mathrm{TsCl} / \mathrm{Py}, 35^{\circ}, 4 \mathrm{~h} .{ }^{\text {d }} \mathrm{KCN} /$ DMSO, $20^{\circ}, 3$ days. ${ }^{\text {e }}$) DIBAH/hexane, $-75^{\circ}, 2 \mathrm{~h} .{ }^{\text { }}$) $\mathrm{Ph}_{3} \mathrm{EtPBr} / \mathrm{BuLi}$, Schlosser conditions. ${ }^{\text {² }}$) 1.1 equiv. of $1 \mathrm{~N} \mathrm{HCl}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O} 4: 1,20^{\circ}, 2$ days.
mediate permitting stereochemical control during the formation of the asymmetric centre at C(2) (Scheme 4).
2.1. Synthesis of (R,R)-3-Methyl-1,2,4-butanetriol (8). Formation of the Asymmetric Centres at $C(3)$ and $C(4)$. The OH -groups of diethyltartrate (1) are protected by acetalization to 2 with benzaldehyde in the presence of triethyl orthoformate and p-toluenesulfonic acid (TsOH)hydrate. Subsequent reduction with LiAlH_{4} in tetrahydrofuran (THF) to the diol 3 and benzylation (benzyl bromide, toluene, KOH) furnishes the dioxolane 4. The overall yield from 1 is 72%, and the three steps are partly described by Erlenmeyer [7], Collet et al. [8], Curtis et al. [9], and Jones [10]. For the replacement of one of the OH -groups of tartaric acid by a CH_{3}-group with inversion of configuration, the epoxide 6 is first prepared following a procedure described by Seeley \& McElwee [11] for the conversion of acetals of 1,2 -diols into epoxides. Due to the symmetry of $4 \mathrm{it} \cdot$ is immaterial on which of the two secondary C -atoms the displacement occurs. Thus, treatment of 4 with N-bromosuccinimide (NBS) in CCl_{4} for three days at room temperature in the absence of light produces the bromo ester 5, which upon alcaline hydrolysis is directly converted to the optically active and therefore trans-disubstituted oxirane $6(88 \%)$. The alkylation of the C_{2}-symmetrical epoxide is achieved according to Johnson et al. [12] with excess $\mathrm{MeLi}(\mathrm{CuI})$ in $\mathrm{Et}_{2} \mathrm{O}$ at -15° to give a single product 7 in 89% yield. The benzyl protecting groups are removed by hydrogenolysis in EtOH . The triol $\mathbf{8}$ is isolated in an overall yield of 56% from diethyl tartrate (1; 7 steps).
2.2. Synthesis of (R, R, E)-3-Methyl-5-heptene-1,2-diol (14). Chain Elongation with Introduction of the trans-Double Bond. The two vicinal OH-groups of the triol 8 are selectively ${ }^{6}$) protected by formation (2,2-dimethoxypropane/benzene/TsOH) of the

[^2]acetal 9 , which can be purified by chromatography or by distillation (85%). The formation of $10-15 \%$ of the isomeric 1, 3-dioxane besides the desired dioxolane 9 could not be avoided. The ratio of the isomers is easily determined from the NMR spectrum. The dioxolane 9 is converted (tosylchloride (TsCl)/pyridine $(\mathrm{Py}) / \mathrm{CHCl}_{3} / 35^{\circ}$) to the tosylate $\mathbf{1 0}^{7}$) in 91% yield. Subsequent carbon-chain elongation with KCN in dimethylsulfoxide (DMSO) at room temperature gives the nitrile $\mathbf{1 1}$ (88%) which is reduced to the aldehyde $12(82 \%)$ with excess diisobutylaluminium hydride (DIBAH) at -75°. This aldehyde is subjected to a Wittig reaction with ethyl(triphenyl)phosphonium bromide under the conditions recommended by Schlosser \& Christmann [16]. The olefin 13 is isolated in a 80% yield and in a configurational purity of over $95 \%^{8}$). Frequently, this type of transformation of aldehydes to olefins has produced 1:1 mixtures of (Z) and (E)-isomers. The successful formation of the (E)-double bond in $\mathbf{1 3}$ requires, that the procedure described in [16] is closely followed. The isopropylidene protecting group of 13 is removed (94%) with 1 NHCl in THF/ $\mathrm{H}_{2} \mathrm{O} 4: 1$. The overall yield of the six steps leading from the triol 8 to the olefinic diol 14 is 42%.
2.3. Synthesis of (R, R, E)-2-Hydroxy-3-methyl-5-heptenal (19). Oxidation of 14 to 19. Although the oxidation can theoretically be performed in one step, the fast rate of

Scheme 3. Synthesis of (R, R, E)-2-Hydroxy-3-methyl-5-heptenal (19)

${ }^{\text {a }}$) $\mathrm{DCC} / \mathrm{DMSO} / \mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{Py} / \mathrm{TFA}, 20^{\circ}, 2 \mathrm{~h} .{ }^{\text {b }}$) $\mathrm{PhCOCl} / \mathrm{Py}, 20^{\circ}, 1 \mathrm{~h} .{ }^{\text {c }}$) $\mathrm{CH}_{2}=\mathrm{CHOEv} / \mathrm{TFA}, 20^{\circ}, 1-3$ days. $\left.\left.{ }^{\text {d }}\right) 10 \mathrm{NKOH} / \mathrm{EtOH}, 20^{\circ}, 11 / 2 \mathrm{~h} .{ }^{e}\right) 1 \mathrm{NHCl} / \mathrm{THF}, 20^{\circ}, 2 \mathrm{~h}$.

[^3]isomerization of an α-hydroxy aldehyde to the most stable α-hydroxy ketone ${ }^{9}$) and the high reactivity of the aldehyde 19 suggested that the selective conversion might be difficult. Indeed, the oxidation of the diol 14 can be effected by the Pfitzner-Moffatt method [$18-20]$ in one step, but only in low yield $(25 \%)^{10}$). To obtain the hydroxy aldehyde 19 in high yield, it is necessary to protect the secondary OH -group of 14 . This is done by monobenzoylation ($\rightarrow \mathbf{1 5}, 90 \%$), followed by protection of the secondary

Scheme 4

${ }^{\text {a }} \mathrm{KCN} / \mathrm{MeNH}_{2} \cdot \mathrm{HCl} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 20^{\circ}, 2 \mathrm{~h} .{ }^{\text {b }}$) $1,1^{\prime}$-Carbonyldiimidazol $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ}$, $16 \mathrm{~h} .{ }^{\text {c }}$) $\mathrm{K}_{2} \mathrm{CO}_{3} /$ $\mathrm{EtOH}, 20^{\circ}, 6 \mathrm{~h} .{ }^{\mathrm{d}}$) $\mathrm{EtOH} .{ }^{\mathrm{e}}$) 1 equiv. of $\left.1 \mathrm{~N} \mathrm{HCl} / \mathrm{EtOH}, 20^{\circ}, 11 / 2 \mathrm{~h} .{ }^{\mathrm{f}}\right) 0.1 \mathrm{NKOH} /$ dioxane, $\left.20^{\circ}, 1 \mathrm{~h} .{ }^{\mathrm{g}}\right) \mathrm{HCl}$ (pH 2). $\left.\left.{ }^{\text {h }}\right) 2 \mathrm{~N} \mathrm{KOH} / \mathrm{H}_{2} \mathrm{O}, 80^{\circ}, 3 \mathrm{~h},{ }^{\mathrm{i}}\right) \mathrm{HCl}(\mathrm{pH} 5)$.

[^4]OH -group as the ethoxyethyl derivative 16 (ethylvinyl ether/trifluoroacetic acid (TFA)) according to a procedure described by Seebach \& Hungerbühler [21], and alkaline hydrolysis of the benzoate to give the primary alcohol 17 . Oxidation of 17 to the aldehyde $\mathbf{1 8}$ is then realized as above in 95% yield. The ethoxyethylprotecting group is removed with 1 N HCl in THF at room temperature yielding the hydroxy aldehyde 19 in a total yield over five steps of 70%.
2.4. Synthesis of ($2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{R}, 6 \mathrm{E}$)-3-Hydroxy-4-methyl-2-methylamino-6-octenoic Acid (25). Introduction of the Methylamino and of the Carboxy Group. Freshly prepared hydroxy aldehyde 19 treated at room temperature with KCN and $\mathrm{MeNH}_{2} \cdot \mathrm{HCl}$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 4: 1$ yields the cyanamine 20 as a mixture of diastereomers (82%). The use of the unprotected α-hydroxy aldehyde 19 as starting material for introduction of the CN - and MeNH-groups is prefered to the use of the protected $\mathbf{1 8}$ because of the sensitivity of the product 20 to acids (fast decomposition giving 19 and by-products). The mixture 20 is converted ($1,1^{\prime}$-carbonyldiimidazol $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / 20^{\circ} / 12 \mathrm{~h}$) to the oxazolidine2 -one diastereomers 21 ($6: 1 /$ cis :trans rel. to ring, 87%). This oxazolidinone protecting group is chosen because of the ease of its preparation under mild neutral conditions (conversion of $\mathbf{2 0}$ to a 2,2-dimethyloxazolidine with acetone in the presence of acid is not possible). Both diastereomers of 21 can be converted in high yield to the same carboximidate 22 by treatment with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in EtOH . The intermediate didehydroimine (Scheme 4) can be characterized by a band at $2230 \mathrm{~cm}^{-1}$ in the IR spectrum of a crude product. This N, α-didehydroimine ${ }^{11}$) reacts with EtOH stereospecifically to yield the thermodynamically more stable trans-configurated (rel. to the ring) carboximidate 22 as a 3:1 mixture (NMR) of (E / Z) - or (Z / E)-isomers (rel. to the $\mathrm{C}=\mathrm{N}$ bond). Hydrolysis of 22 with 1 NHCl (1 equiv.) gives the enantiomerically pure N-methylamino-acid derivative 23 with the O - and N -functional groups in the desired threo-configuration. Similar conversion of cis-5-membered ring derivatives into thermodynamically more stable trans-derivatives have precedents in the literature $\left.[23-28]^{12}\right)$. Both protecting

[^5]
groups of the N-methylamino acid 23 can be removed in one step (90%) by treatment with 2 N KOH at 80° or stepwise using the following procedure. The ester group of $\mathbf{2 3}$ is selectively hydrolyzed with excess of 0.1 N KOH in dioxane at room temperature giving the acid 24 in 90% yield. The oxazolidine-2-one group of 24 is cleaved with 2 N $\mathrm{KOH}\left(80^{\circ}, 3 \mathrm{~h}, 90 \%\right)$. The desired N-methylamino acid 25 crystallizes from the reaction mixture following acidification to pH 5 with 1 N HCl (m.p. $240-241^{\circ},[\alpha]_{\mathrm{D}}=+13.5^{\circ}$ $\left(c=0.50, \mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 7\right)$). The yield of 25 is 48% after six steps from the α-hydroxy aldehyde 19 or 7.8% after 24 steps from diethyl $(R, R)-(+)$-tartrate ($\mathbf{1}$; average yield of 90% per step). The Figure shows bristly crystals of $\mathbf{2 5}$ (from MeOH).

The stereospecific synthesis described here allows for the first time the characterization of the new amino acid ($4 R$)-4-(($E)$-2-butenyl)-4, N-dimethyl-L-threonine (25) and opens the way for a total synthesis of cyclosporine.

We thank Kurl Martin and Louis Walliser for their capable technical assistance. Thanks also due to Dr. H. Braunschweiger and F. Seemann for the supply of ample quantities of intermediates. We appreciate the valuable help by H.R. Loosli, M. Ponelle and T. Zardin (NMR spectra), W. Pfirter (analysis), C. Quiquerez (MS), R. Knoepfli (photographs), H. Stocker (for drawing the schemes) and C. Weber (for typing the manuscript). It is a pleasure to acknowledge with sincere thanks the encouragement of Prof. Dr. D. Seebach and his help in improving the manuscript.

Figure. Crystals of the Synthetic New Amino Acid MeBmt ${ }^{3}$) (crystallized from MeOH and photographed under red light by R. Knoepfli, Photo Dept. at Sandoz)

Experimental Part

General. Melting points (m.p.): Büchi 510; all m.p. and b.p. are uncorrected. IR: Perkin Elmer 720 (data in cm^{-1}); intensities as weak (w), medium (m), strong (s); broad (br.), shoulder (sh). ${ }^{1} \mathrm{H}-\mathrm{NMR}$: Varian A60 (60 $\mathrm{MHz})$, Bruker $H X 90(90 \mathrm{MHz})$, Varian $H A(100 \mathrm{MHz})$, Bruker $W H 360(360 \mathrm{MHz})$; chemical shifts are given in ppm with internal tetramethylsilane (TMS) reference at 0.0 ppm , multiplicities as singlet (s), doublet (d), triplet (t), quadruplet (q), multiplet (m), coupling constants (J) in Hz . Optical rotation: polarimeter Perkin Elmer 241. MS: AEI MS30 for low resolution (LR) and Varian MAT 212 for high resolution (HR) and field desorption (FD), measurements effected at 70 eV (electron energy). For column chromatography, silica gel $0.063-0.2 \mathrm{~mm}$ is used.

1. Diethyl (4 R,5 R)-2-Phenyl-1, 3-dioxolane-4,5-dicarboxylate (2). To a mixture of $191 \mathrm{~g}(0.93 \mathrm{~mol})$ of (R, R)-(+)-diethyl tartrate ($\mathbf{1}$; Fluka, Purum $), 145 \mathrm{~g}(0.98 \mathrm{~mol})$ of $\mathrm{HC}(\mathrm{OEt})_{3}$ and $104 \mathrm{~g}(0.98 \mathrm{~mol})$ of benzaldehyde, $100 \mathrm{mg}(0.53 \mathrm{mmol})$ of $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ are added. After 2 to 3 min , the temp. rises from 22 to 40° and is maintained at 40° with a cooling bath until the exothermic reaction has stopped. The mixture is then heated to $100-120^{\circ}$ for 4 h so that the alcohol formed slowly distills over. The mixture is then cooled to r.t., diluted with 1000 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and shaken with 200 ml of sat. aq. NaHCO_{3}. The aq. phase is reextracted with 500 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined org. phase dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent evaporated. The light yellow liquid obtained is distilled under vaccum to yield $59.5 \mathrm{~g}(31.2 \%)$ of 1 , b.p. $108^{\circ} / 0.3$ Torr, and $173 \mathrm{~g}(63.4 \%$, corrected 94%) of 2, b.p. $146^{\circ} / 0.2$ Torr, which is crystallized from 100 ml of $\mathrm{Et}_{2} \mathrm{O}$ and 500 ml of petroleum ether to yield $141.5 \mathrm{~g}(51.8 \%)$ of crystalline 2, m.p. $4446^{\circ},[\alpha]_{\mathrm{D}}^{20}=-33.1^{\circ}\left(c=1.3, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2980 w, 2945 w$, $1760 s, 1465 m, 1400$ br., $1380 \mathrm{~m}, 1220 \mathrm{~s}, 1110 \mathrm{~s}, 1030 \mathrm{~m}, 960 \mathrm{w}, 920 \mathrm{w}, 855 \mathrm{w}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right): 1.24,1.28$ $\left(2 t, J=7,6 \mathrm{H}, 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 4.28,4.34\left(2 q, J=7,4 \mathrm{H}, 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 4.84,4.92(2 d, J=4.5,2 \mathrm{H}, \mathrm{H}-\mathrm{C}(4)$, $\mathrm{H}-\mathrm{C}(5)) ; 6,16(s, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)) ; 7.3-7.8\left(m, 5 \mathrm{H}\right.$, arom. H). MS (LR): $294\left(\mathrm{M}^{+}\right), 293,221,189,173,135,122$, 105.

$$
\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{6}(294.30) \quad \text { Calc. } \mathrm{C} 61.2 \quad \mathrm{H} 6.2 \quad \text { O } 32.6 \% \quad \text { Found C } 61.2 \quad \mathrm{H} 6.3 \quad \text { O } 33.0 \%
$$

2. (4 S, 5 S)-2-Phenyl-1,3-dioxolane-4,5-dimethanol (3). Under N_{2} and cooling with $\mathrm{CO}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1000 \mathrm{ml}$ of abs. THF (Merck) are added to $20.9 \mathrm{~g}(0.55 \mathrm{~mol})$ of LiAlH_{4} without stirring to avoid that the temp. rises above $+10^{\circ}$. Then, $136.5 \mathrm{~g}(0.46 \mathrm{~mol})$ of $\mathbf{2} \mathrm{in} 800 \mathrm{ml}$ of abs. THF are added dropwise with stirring so that the temp. does not rise above $+25^{\circ}$. The mixture is stirred for 1 further h at 22°. Then, under a strong N_{2} stream and cooling, 70 ml of sat. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ are added dropwise. After stirring for l further h at r.t., the mixture is filtered through talc, the residue stirred $3 \times$ with 1000 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 4: 1$ during 30 min , and filtered. The combined filtrates are dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through talc and evapored to yield $89.5 \mathrm{~g}(85 \%)$ of pale yellow 3, $[\alpha]_{\mathrm{D}}^{20}=+7.4^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3580 \mathrm{~s}, 3450$ br. $3030 \mathrm{w}, 2920 \mathrm{~m}, 2870 \mathrm{~m}, 1460 \mathrm{~m}, 1400$ br. $1220 \mathrm{~m}, 1100 \mathrm{~s}, 1070-960 \mathrm{~s}, 920-850 \mathrm{w} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 2.70(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{OH}) ; 3.70\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{O}\right)$; $4.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}(5)) ; 5.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)) ; 7.28-7.60\left(\mathrm{~m}, 5 \mathrm{H}\right.$, arom. H). MS (LR): $210\left(\mathrm{M}^{+}\right)$, 209, 179, 148, 133 123. MS (HR): $210.0893\left(M^{+}, \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}\right.$ calc. 210.0884).
3. (4 S, 5 S)-4,5-Bis (benzyloxymethyl)-2-phenyl-1,3-dioxolane (4). By evaporating $2 \times$ with 300 ml of toluene, $15 \mathrm{~g}(71.4 \mathrm{mmol})$ of $\mathbf{3}$ are rendered completely anhydrous. The residual oil is redissolved in 150 ml of toluene, and 30 g of powered $\mathrm{KOH}(535 \mathrm{mmol})$ and $71.5 \mathrm{~g}(418 \mathrm{mmol})$ of benzyl bromide are added. The mixture is stirred for 15 h at 80°, cooled, the toluene phase decanted, and the org. component removed from the residual phase by stirring with 2 further $200-\mathrm{ml}$ portions of toluene and decanting. The combined toluene phases are filtered through talc, evaporated, and the remaining oil is chromatographed on 2 kg of silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (fractions containing benzyl bromide are discarded): $25.2 \mathrm{~g}(90 \%)$ of 4 , light yellow fluid, $[\alpha]_{\mathrm{D}}^{20}=+10.1^{\circ}$ $\left(c=1.4, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3030 w, 2950-2850 \mathrm{~m}, 1460 \mathrm{w}, 1365 w, 1220 w, 1090 \mathrm{~s}, 1060 \mathrm{~m}, 1020 \mathrm{w}, 980 \mathrm{w} .{ }^{1} \mathrm{H}-$ NMR ($\left.\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right): 3.65-3.75\left(m, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{O}\right) ; 4.16-4.24,4.25-4.34(2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}(5)) ; 4.59$ ($d, J=8,4 \mathrm{H}, 2 \mathrm{PhCH}_{2}$); $5.97(s, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(2))$. MS (LR): $390\left(\mathrm{M}^{+}\right), 299,283,269,193,180,133$.

$$
\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{4}(390.48) \quad \text { Calc. } \mathrm{C} 76.9 \quad \text { H } 6.7 \text { O } 16.4 \% \quad \text { Found C } 77.2 \quad \text { H } 6.8 \quad \text { O } 16.8 \%
$$

4. (2 S, 3 R)-1,4-Bis(benzyloxy)-3-bromo-2-butylbenzoate (5). The suspension of $10.9 \mathrm{~g}(61.2 \mathrm{mmol})$ of NBS in 150 ml of CCl_{4} is cooled to 4° and $23.9 \mathrm{~g}(61.2 \mathrm{mmol})$ of 4 in 250 ml of CCl_{4} added dropwise at 4° within 50 min . The cooling bath is removed, the flask wrapped in aluminium foil and the mixture stirred for 3 days at r.t. The resulting orange suspension is diluted with 11 of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and shaken with 200 ml of sat. NaHCO_{3}. The aq. phase is extracted with 300 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined org. phase dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under vacuum. The residue is chromatographed on 1 kg of silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}: 26.2 \mathrm{~g}(91 \%)$ of 5 , colourless oil, $[\alpha]_{\mathrm{D}}^{20}=+18.7^{\circ}\left(c=1.3, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3030 w, 2855 w, 1725 s, 1605 w, 1500 w, 1455 m, 1365 w, 1320 w, 1280-$
$1220 \mathrm{~m}, 1205 \mathrm{w}, 1180 \mathrm{w}, 1110 \mathrm{~s}, 1070 \mathrm{~m}, 1020 \mathrm{~m} .{ }^{\mathrm{I}} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 3.75-3.90\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{O}\right) ; 4.45(\mathrm{~s}$, $4 \mathrm{H}, 2 \mathrm{PhCH} 2) ; 4.49-4.60(m, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)) ; 5.45-5.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)) ; 7.0-7.50(\mathrm{~m}, 13 \mathrm{H}$, arom. H); 7.85$8.0\left(m, 2\right.$ arom. $\left.\mathrm{H}_{o}\right)$. MS (LR): $470\left(M^{\dagger}+1\right), 468\left(M^{\dagger}-1\right), 379,377,365,363,273,271,193,181$.

$$
\begin{array}{llllll}
\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{BrO}_{4}(468.9) & \text { Calc. } \mathrm{C} 63.97 & \mathrm{H} 5.33 & \mathrm{Br} 17.04 & \mathrm{O} 13.65 \% \\
& \text { Found } \mathrm{C} 63.6 & \mathrm{H} 5.4 & \mathrm{Br} 17.3 & \mathrm{O} 13.6 \%
\end{array}
$$

5. ($2 \mathrm{~S}, 3 \mathrm{~S}$)-2,3-Bis (benzyloxymethyl)oxirane (6). To a solution of $25.7 \mathrm{~g}(54.8 \mathrm{mmol})$ of 5 in 330 ml of $\mathrm{EtOH}, 16.5 \mathrm{ml}$ of aq. 10 N KOH are added to give a substantially concommitant precipitation of KBr . The mixture is stirred for 30 min at r.t. and then adjusted with 10 N HCl to pH 5 . The mixture is evaporated under vacuum, the residue taken up in 500 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with 200 ml of $\mathrm{H}_{2} \mathrm{O}$ and the aq. phase extracted $2 \times$ with 200 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined org. phases are dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue is distilled under vacuum to yield $14.2 \mathrm{~g}(92 \%)$ of 6 , b.p. $164-168^{\circ} / 0,2$ Torr, $[\alpha]_{\mathrm{D}}^{20}=-10.2^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$, m.p. $30-31^{\circ}$ after crystallization from $\mathrm{Et}_{2} \mathrm{O}$ /petroleum ether. Instead of purification by distillation, the residue (second batch) can be chromatographed on 1 kg of silica gel with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield $15.1 \mathrm{~g}(97 \%)$ of 6 of the same quality, $[\alpha]_{\mathrm{D}}^{20}=-10.1^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3020 \mathrm{w}, 2850 \mathrm{~m}, 1600 \mathrm{w}, 1500 \mathrm{w}, 1455 \mathrm{~m}, 1365 \mathrm{~m}$, $1220 \mathrm{~m}, 1100 \mathrm{~s}, 1020 \mathrm{w}, 865 \mathrm{w}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right): 3.11(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}(2), \mathrm{H}-\mathrm{C}(3)) ; 3.49(d d, J=5$, $\left.11.5,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right) ; 3.74\left(d d, J=2.5,11.5,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.55,4.59\left(2 d, J=12,4 \mathrm{H}, 2 \mathrm{PhCH}_{2}\right) ; 7.85(s, 10 \mathrm{H}$, arom. H). MS (LR): $284\left(M^{+}\right), 193,176,145,133,107$.

$$
\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3}(284.36) \quad \text { Calc. C } 76.0 \text { H } 7.1 \quad \text { O } 16.9 \% \quad \text { Found C } 76.0 \quad \text { H } 6.9 \quad \text { O } 17.3 \%
$$

6. (2R,3R)-1,4-Bis(benzyloxy)-3-methyl-2-butanol (7). To a suspension of 4.64 g (24.37 mmol) of va-cuum-dried CuI in 100 ml of abs. $\mathrm{Et}_{2} \mathrm{O}$ with dry N_{2}-gassing are added rapidly at $0^{\circ} 23.6 \mathrm{ml}(47.27 \mathrm{mmol})$ of $4.4 \% \mathrm{MeLi} / \mathrm{Et}_{2} \mathrm{O}$. The resulting clear orange -brown solution is cooled immediately to -60°, a solution of 3.0 g (10.56 mmol) of 6 in 25 ml of abs. $\mathrm{Et}_{2} \mathrm{O}$ is added and the mixture stirred for 1 h at -60°. To destroy excess $\mathrm{MeLi}, 5 \mathrm{ml}$ of MeOH are added. The cooling bath is then removed, the mixture warmed to r.t., and 5 ml of $\mathrm{H}_{2} \mathrm{O}$ added. The mixture is diluted with 300 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed $3 \times$ with 200 ml of $\mathrm{H}_{2} \mathrm{O}$ and the aq. copper-coloured precipitate extracted $3 \times$ with 200 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined org. phase is dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through a layer of talc, evaporated under vacuum, and the residue purified by chromatographing on 90 g of silica gell with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield $2.82 \mathrm{~g}(89 \%)$ of 7 , light-beige oil, $[\alpha]_{\mathrm{D}}^{20}=-4.8^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $3570 w, 3470,3020,2950-2850 \mathrm{~m}, 1500 \mathrm{w}, 1455 \mathrm{~m}, 1360 \mathrm{~m}, 1090 \mathrm{~s}, 1020 \mathrm{w} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 0.95(d$, $\left.J=7,3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(3)\right) ; 1.82-2.22(m, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)) ; 3.08(d, J=4,1 \mathrm{H}, \mathrm{HO}-\mathrm{C}(2)) ; 3.40-3.65(\mathrm{~m}, 4 \mathrm{H}$, $2 \mathrm{H}-\mathrm{C}(1), 2 \mathrm{H}-\mathrm{C}(4)) ; 3.50-3.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)) ; 4.50\left(d, J=6,4 \mathrm{H}, 2 \mathrm{PhCH}_{2}\right) ; 7.10-7.50(\mathrm{~m}, 10 \mathrm{H}$, arom. H). MS (LR): $300\left(M^{+}\right), 281,229,209,191,179,145,121,107,91$.

$$
\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{3}(300.40) \quad \text { Calc. C } 76.0 \text { H } 8.1 \quad \text { O } 16.0 \% \quad \text { Found } \mathrm{C} 75.8 \quad \text { H } 8.0 \quad \text { O } 16.5 \%
$$

7. ($2 \mathrm{R}, 3 \mathrm{R}$)-3-Methyl-1,2,4-butanetriol (8). At r.t., $4.5 \mathrm{~g}(15 \mathrm{mmol})$ of 7 in 120 ml of $95 \% \mathrm{EtOH}$ are hydrogenated over 0.5 g of $10 \% \mathrm{Pd} / \mathrm{C}$ for 2 h . The product is filtered through talc, evaporated and chromatographed on 120 g of silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 4: 1$ to yield $1.77 \mathrm{~g}(98 \%)$ of $\mathbf{8}$, colourless, viscous oil, $[\alpha]_{1)}^{20}=+5.8^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right.$). IR (neat); 3300 (br.), 2950-2850s, $1455 \mathrm{~m}, 1420$ br. 1330 br. 1220 br. $1120-970 \mathrm{~s}$, $920 \mathrm{w}, 870 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right): 0.88\left(d, J=7,3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(3)\right) ; 1.50-2.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)) ; 2.90$ (br. $s, 2 \mathrm{H}, 2 \mathrm{OH}$); 3.0-3.35 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)$); 3.40-4.0 ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}(1), 2 \mathrm{H}-\mathrm{C}(4)$); 4.5-4.6 (br. $s, 1 \mathrm{H}$, $\mathrm{HO}-\mathrm{C}(2))$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}, 60 \mathrm{MHz}\right): 0.80\left(d, J=7,3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(3)\right) ; 1.40-1.90(m, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(3))$; 3.20-3.60 ($m, 5 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}(1) ; \mathrm{H}-\mathrm{C}(2), 2 \mathrm{H}-\mathrm{C}(4)) ; 4.15-4.40(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{OH})$. MS (LR): $121\left(\mathrm{M}^{+}+1\right), 105$, 89, 71, 57.

$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}_{3}(120.15) \quad$ Calc. C $50.0 \quad \mathrm{H} 10.1 \quad \mathrm{O} 40.0 \% \quad$ Found $\mathrm{C} 50.6 \quad \mathrm{H} 10.3 \quad$ O 39.6%

8. ($2 \mathrm{R}, 3 \mathrm{R}$)-3,4-Isopropylidenedioxy-2-methylbutanol (9). A solution of 30.5 g (254 mmol) of $\mathbf{8}$ in 180 ml benzene is refluxed for 2 h with $39.8 \mathrm{~g}(383 \mathrm{mmol})$ of 2,2 -dimethoxypropane and 180 mg of $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$. The solvent is evaporated, the remaining oil taken up in 600 ml of acetone, 0.6 g of $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ are added, and the solution is boiled for 16 h under reflux. The resulting yellow solution is evaporated to 100 ml and chromatographed on 1 kg of neutral alumina (act. II) using $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}: 34.6 \mathrm{~g}(85 \%)$ of 9 , oil, $[\alpha]_{\mathrm{D}}^{20}=-19.8^{\circ}$ ($c=1.0, \mathrm{CHCl}_{3}$), b.p. $56^{\circ} / 0.1$ Torr [9 has been separated from ca. 15% of 2,4-isopropylidenedioxy-3-methylbutanol eluted after 9 , with $\mathrm{CH}_{3}-\mathrm{C}(3)$ at 0.79 ppm (s. $\mathrm{CH}_{3}-\mathrm{C}(2)$ of 9 at 0.85 ; main difference between the two isomers)]. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 3030 \mathrm{w}, 3000-2840 \mathrm{~m}, 1450 \mathrm{~m}, 1370 \mathrm{~m} .1200 \mathrm{~m}, 1100 \mathrm{~m}, 1060 \mathrm{~s}, 845 \mathrm{w} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): 0.85\left(d, J=7,3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(2)\right) ; 1.36-1.42\left(2 \mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 1.60-2.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)) ; 2.80(t$,
$J=6,1 \mathrm{H}, \mathrm{OH}) ; 3.50-3.75(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}(1)) ; 3.82-4.20(m, 3 \mathrm{H}, \mathrm{H}-\mathrm{C}(3), 2 \mathrm{H}-\mathrm{C}(4))$. $\mathrm{MS}(\mathrm{LR}):$ no M^{+}, 145, 129, 101, 72, 28.

$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{3}(160.215) \quad$ Calc. $\mathrm{C} 60.0 \quad \mathrm{H} 10.1$ O $30.0 \% \quad$ Found C $59.5 \quad \mathrm{H} 10.1 \quad$ O 30.2%

9. ($2 \mathrm{R}, 3 \mathrm{R}$)-3,4-Isopropylidenedioxy-2-methylbutyl p-toluenesulfonate ($\mathbf{1 0}$). At r.t., $14.3 \mathrm{~g}(75 \mathrm{mmol}$) of TsCl are added to a solution of $10.0 \mathrm{~g}(62.5 \mathrm{mmol})$ of 9 in 65 ml of CHCl_{3}. Then, 10.1 ml of abs. pyridine are added, whereupon the temp. rises to 31°. The exothermic reaction continues for 45 min before the temp. begins to fall. The mixture is then stirred for 3 h at 35°, the resulting solution diluted with 300 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed once with 150 ml of sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and twice with 150 ml of sat. $\mathrm{Cu}_{2} \mathrm{SO}_{4}$. The aq. phases are extracted with 200 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined org. phases dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through talc and evaporated. The residue is chromatographed on 400 g of neutral alumina (act. II) using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After crystallization from petroleum ether, $17.8 \mathrm{~g}(91 \%)$ of hygroscopic 10 are obtained, $[\alpha]_{\mathrm{D}}^{20}=+14.6\left(c=1.0, \mathrm{CHCl}_{3}\right)$, m.p. $39-40^{\circ} .1 \mathrm{R}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $3050 \mathrm{w}, 2950-2870 \mathrm{~s}, 1600 \mathrm{~m}, 1460 \mathrm{~m}, 1360 \mathrm{~s}, 1240-1150 \mathrm{~s}, 1100 \mathrm{~s}, 1060 \mathrm{~s}, 980-920 \mathrm{~s}, 860-800 \mathrm{~s}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 90\right.$ $\mathrm{MHz}): 0.91\left(d, J=7,3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(2)\right) ; 1.28,1.31\left(2 \mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 1.75-2.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)) ; 2.43(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{PhCH}_{3}\right) ; 3.40-4.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{C}(3), 2 \mathrm{H}-\mathrm{C}(4), 2 \mathrm{H}-\mathrm{C}(1)) ; 7.34,7.80(2 d, J=8,4 \mathrm{H}$, arom. H). MS (LR): $314\left(M^{+}\right), 299,285,250,239,215,173,155,127,101$.

$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~S}(314.403) \quad$ Calc. C $57.3 \quad$ H 7.0 O $25.4 \% \quad$ Found C 57.0 H $6.9 \quad$ O 24.9%

10. (3 R,4 R)-4, 5-Isopropylidenedioxy-3-methylpentanenitrile (11). The crystalline, hygroscopic 10 (17.0 g , $54.1 \mathrm{mmol})$ is immediately dissolved in 90 ml of DMSO, $4.38 \mathrm{~g}(67.3 \mathrm{mmol})$ of KCN are added, and the mixture is stirred for 3 days at r.t. under N_{2}. The obtained solution is diluted with 250 ml of toluene, shaken with 125 ml of $\mathrm{H}_{2} \mathrm{O}$, the aq. phase extracted $2 \times$ with 300 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, evaporated, and the residue taken up in 100 ml of $\mathrm{H}_{2} \mathrm{O}$. After extracting $2 \times$ with 200 ml of toluene, the org. phases are combined with the first toluene phase, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and distilled under high vacuum to yield $8.2 \mathrm{~g}(90 \%)$ of 11 , colourless oil, $[\alpha]_{\mathrm{D}}^{20}=+11.7^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$, b.p. $60-63^{\circ} / 0.03$ Torr. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2970 \mathrm{~m}, 2930 \mathrm{~m}, 2870 \mathrm{~m}, 2240 \mathrm{w}, 1460 \mathrm{w}$, $1375 m, 1210 s, 1150 m, 1060 s, 840 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right): 1.07\left(d, J=7,3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(3)\right) ; 1.35,1.40$ $\left(2 s, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 1.93(m, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)) ; 2.43(d d, J=8,17,1 \mathrm{H})$ and $2.60(d d, J=4,17,1 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}(2))$; $3.64(d d, J=6,8,1 \mathrm{H})$ and $4.09(d d, J=6,8,1 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}(5)) ; 3.85(q, J=6,1 \mathrm{H}, \mathrm{H}-\mathrm{C}(4))$. MS (LR): 168 ($M^{+}-1$), 154, 123, 101, 94.

$\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{2}(169.22) \quad$ Calc. $\mathrm{C} 63.9 \quad \mathrm{H} 8.9 \quad \mathrm{~N} 8.3 \quad$ O $18.9 \% \quad$ Found $\mathrm{C} 63.1 \quad \mathrm{H} 9.0 \quad \mathrm{~N} 8.2 \quad$ O 19.7%

11. ($3 \mathrm{R}, 4 \mathrm{R}$)-3,4-Isopropylidenedioxy-3-methylpentanal (12). A solution of $41 \mathrm{~g}(243 \mathrm{mmol})$ of 11 in 1 l of hexane is cooled to $-78^{\circ}, 205 \mathrm{ml}$ of DIBAH (20% solution in hexane) are added dropwise under N_{2} within 30 min in such a way that the temp. does not rise over -70°. The mixture is then stirred for $1 / 1 / 2 \mathrm{~h}$ at -78°. Excess DIBAH is decomposed by the addition of 75 ml of $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF} 1: 4$ at -70° under N_{2}. The resulting mixture is poured onto 11 of $\mathrm{H}_{2} \mathrm{O}$ and shaken. The precipitated sediment is removed with a suction filter, the filtrate separated from the aq. phase and shaken $2 \times$ with 300 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined org. phases are dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ evaporated, and chromatographed on 3 kg of silica gel using $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}: 34.2 \mathrm{~g}(82 \%)$ of $\mathbf{1 2}$, colourless oil after high-vacuum distillation under N_{2}, b.p. $42-45^{\circ} / 0.03$ Torr. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3000-2810 \mathrm{~m}, 2730 \mathrm{w}$, $1725 \mathrm{~s}, 1460 \mathrm{w}, 1380 \mathrm{~m}, 1220 \mathrm{~m}, 1160 \mathrm{~m}, 1065 \mathrm{~s}, 855 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 0.90(d, J=7,3 \mathrm{H}$, $\left.\mathrm{CH}_{3}-\mathrm{C}(3)\right) ; 1.32,1.39\left(2 \mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 2.0-2.90(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-\mathrm{C}(3), 2 \mathrm{H}-\mathrm{C}(2)) ; 3.50-4.20(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-\mathrm{C}(4)$, $2 \mathrm{H}-\mathrm{C}(5)) ; 9.75(t, J=2,1 \mathrm{H}, \mathrm{H}-\mathrm{C}(1))$. MS (LR): $173\left(M^{+}+1\right), 157,131,113,101$. MS (HR): 173.1178 $\left(M \mathrm{H}^{+}, \mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}_{3}\right.$, calc. 173.1178).

$\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3}$ (172.226) Calc. C 62.8 H 9.4 O $27.9 \% \quad$ Found $\mathrm{C} 62.1 \quad \mathrm{H} 9.3 \quad$ O 28.2\%

12. ($5 \mathrm{R}, 6 \mathrm{R}, 2 \mathrm{E}$)-6,7-Isopropylidenedioxy-5-methyl-2-heptene (13). At $110^{\circ}, 19.0 \mathrm{~g}$ (51.1 mmol) of ethyl(triphenyl)phosphonium bromide are dried over-night under high vacuum and then dissolved in 400 ml of THF/ $\mathrm{Et}_{2} \mathrm{O} 3: 5$ under N_{2}. Then, 1.1 mol-equiv, of BuLi (24 ml of a 15% solution in hexane) are added under N_{2} within 20 min in such a way that the temp. does not rise above 30°. The mixture gets strong red and is stirred for a further 30 min at r.t. before cooling to -78°. Then, $8.0 \mathrm{~g}(46.5 \mathrm{mmol})$ of 12 in 50 ml of abs. $\mathrm{Et}_{2} \mathrm{O}$ are added dropwise so that the temp. does not rise above -73°. The mixture is then stirred for 30 min and takes on a light-yellow colour. A further $20.8 \mathrm{ml}(51.1 \mathrm{mmol})$ of BuLi in hexane are added at -78°, the red mixture is again stirred for 30 min , then warmed to -30°, and $6.5 \mathrm{ml}(69.7 \mathrm{mmol})$ of $t-\mathrm{BuOH}$ are added dropwise within 10 \min at -30° followed by $7.8 \mathrm{~g}(69.7 \mathrm{mmol})$ of $t-\mathrm{BuOK}$ (all at once). The now yellow solution is warmed to r.t., stirred for $11 / 2 \mathrm{~h}$ and poured onto 11 of $\mathrm{H}_{2} \mathrm{O}$. The aq. phase is separated and shaken $4 \times$ with 200 ml of $\mathrm{Et}_{2} \mathrm{O}$. The combined org. phases are dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue is chromatographed on silica gel
using $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}: 6.9 \mathrm{~g}(80.5 \%)$ of pure 13, colourless oil. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3575 \mathrm{~s}, 3400 \mathrm{~s}, 2920 \mathrm{~s}, 1460 \mathrm{~m}$. $1380 \mathrm{~m} .1200 \mathrm{w}, 1060 \mathrm{~s}, 975 \mathrm{~s}, 920 \mathrm{~s}, 880 \mathrm{w} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right): 0.84\left(d, J=7,3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(5)\right) ; 1.37$, $1.40\left(2 \mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 1.67\left(d, J=5,3 \mathrm{H}, 3 \mathrm{H}-\mathrm{C}(1)^{13}\right)$); $1.71,1.85,2.26(3 \mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}(5)) ; 3.60$ $(t, J=8,1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7)) ; 3.87(d d, J=8,15,1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)) ; 3.98(d d, J=8,10,1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7)) ; 5.44(m, 2 \mathrm{H}$, $\mathrm{H}-\mathrm{C}(2), \mathrm{H}-\mathrm{C}(3))$.
13. ($2 \mathrm{R}, 3 \mathrm{R}, 5 \mathbf{E}$)-3-Methyl-5-heptene-1,2-diol (14). To a solution of 6.5 g (35.3 mmol) of 13 in 320 ml of THF are added 80 ml of $\mathrm{H}_{2} \mathrm{O} / 1 \mathrm{~N} \mathrm{HCl} \mathrm{1:1}$.The mixture is allowed to stand for 2 days at r.t., adjusted to $\mathrm{pH} 6-7$ by the addition of sat. NaHCO_{3}, the THF is evaporated and the aq. solution extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ until the test for the presence of diols is negative (on TLC (silica gel) upon spraying with 2% vanillin and $2 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in EtOH and warming, blue spots for diols). The combined org. phases are dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated, and filtered through 500 g of silica gel using $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}: 4.75 \mathrm{~g}(94 \%)$ of 14 , colourless oil, $[\alpha]_{D}^{22}=-5.7^{\circ}$ $\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3600 \mathrm{~s}, 3450 \mathrm{~s}, 3020 \mathrm{w}, 2950-2800 \mathrm{~s}, 1460 \mathrm{~m}, 1390 \mathrm{~m}, 1200 \mathrm{w}, 1060 \mathrm{~s}, 970 \mathrm{~s}(\mathrm{C}=\mathrm{C}$, trans $), 920 \mathrm{w}, 880 \mathrm{w} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right): 0.85\left(\mathrm{~d}, \mathrm{~J}=7,3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(3)\right) ; 1.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)) ; 1.66$ $(d, J=5,3 \mathrm{H}, 3 \mathrm{H}-\mathrm{C}(7)) ; 1.90,2.25(2 \mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}(4)) ; 3.38(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{OH}) ; 3.48,3.68(2 \mathrm{~m}, 3 \mathrm{H}$, $2 \mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(2)$); 5.37-5.53 (m, 2 H, H-C(5), H-C(6)). MS (LR): $144\left(M^{+}\right), 126,113,108,95,82,67,55$, 43, 28, 18.

$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}(144.21) \quad$ Calc. $\mathrm{C} 66.6 \quad \mathrm{H} 11.2$ O $22.2 \% \quad$ Found C 66.2 H $11.4 \quad$ O 22.3%

14. ($2 \mathrm{R}, 3 \mathrm{R}, 5 \mathrm{E}$)-2-Hydroxy-3-methyl-5-heptenyl Benzoate (15). Within $10 \mathrm{~min}, 9.66 \mathrm{~g}(68.71 \mathrm{mmol})$ of PhCOCl are added to a solution of $9.0 \mathrm{~g}(62.5 \mathrm{mmol})$ of 14 in 90 ml of pyridine, pre-cooled to 0°. The mixture is stirred for 40 min at r.t., diluted with 600 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed $3 \times$ with 200 ml of sat. CuSO_{4}. The aq. phases are extracted with 200 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the org. phases combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated, and chromatographed on 500 g of silica gel using $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}: 14.0 \mathrm{~g}(90 \%)$ of 15 , colourless oil, $[\alpha]_{\mathrm{D}}^{20}=-11.7^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3600 \mathrm{~m}, 3010 \mathrm{w}, 3000-2800 \mathrm{~m}, 1720 \mathrm{~s}, 1610 \mathrm{w}, 1460 \mathrm{~m}, 1320 \mathrm{~m}, 1270 \mathrm{~s}$, 1180 m , $1120 \mathrm{~s}, 1080 \mathrm{~m}, 1030 \mathrm{~m}, 970 \mathrm{w} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 1.0\left(d, J=7,3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(3)\right) ; 1.65(d$, $J=5,3 \mathrm{H}, 3 \mathrm{H}-\mathrm{C}(7)) ; 1.7-2.5(m, 3 \mathrm{H}, \mathrm{H}-\mathrm{C}(3), 2 \mathrm{H}-\mathrm{C}(4)) ; 2.35(d, J=4,1 \mathrm{H}, \mathrm{HO}-\mathrm{C}(2)) ; 3.80(m, 1 \mathrm{H}$, $\mathrm{H}-\mathrm{C}(2)) ; 4.40(m, 2 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}(1)) ; 5.5(m, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(6)) ; 7.3-7.7(m, 3 \mathrm{H}, m$ - and p-arom. H$) ; 7.98$, $8.10\left(2 d, J=2,2 \mathrm{H}, o\right.$-arom. H). MS (LR): $248\left(M^{\dagger}\right), 230,192,175,165,135,126,105,93,82,77,55$.
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}(248.32) \quad$ Calc. C 72.6 H 1.8 O $19.3 \% \quad$ Found C 72.6 H $8.2 \quad$ O 19.1%
15. ($2 \mathrm{R}, 3 \mathrm{R}, 5 \mathrm{E}$)-2-(I'-Ethoxyethoxy)-3-methyl-5-heptenyl Benzoate (16). To a solution of 14.0 g (56.5 $\mathrm{mmol})$ of 15 in 200 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 14.4 \mathrm{~g}(0.2 \mathrm{~mol})$ of ethyl vinyl ether and I drop of TFA are added. The mixture is stirred for 3 days at r.t. and the resulting solution chromatographed on 800 g of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ (act. II) using $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}: 16.8 \mathrm{~g}(93 \%)$ of 16 , colourless oil, $[\alpha]_{\mathrm{D}}^{20}=-3.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $2900 \mathrm{~m}, 1720 \mathrm{~s}, 1450 \mathrm{~m}, 1380 \mathrm{~m}, 1320 \mathrm{w}, 1270$ (br.), $1180 \mathrm{w}, 1120 \mathrm{~s}, 1055 \mathrm{w}, 1025,970 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right.$, $1: 1$ mixture of diastereomers): $0.97,0.99\left(2 d, J=6,3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(3)\right) ; 1.12,1.20\left(2 t, J=7,3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; $1.33,1.35\left(2 d, J=6,3 \mathrm{H}, 3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 1.66(d, J=5,3 \mathrm{H}, 3 \mathrm{H}-\mathrm{C}(7)) ; 1.9(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}(4)) ; 2.26(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-\mathrm{C}(3)) ; 3.52,3.65\left(2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; 3.72-3.84(m, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)) ; 4.29,4.38(2 \mathrm{dd}, J=12,6,1 \mathrm{H}$, $\mathrm{H}-\mathrm{C}(1)) ; 4.48,4.52(2 \mathrm{dd}, \mathrm{J}=12,4,1 \mathrm{H}, \mathrm{H}-\mathrm{C}(1)) ; 4.80,4.90\left(2 q, J=5,1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 5.45(m, 2 \mathrm{H}$, $\mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(6))$. MS (LR): $320\left(\mathrm{M}^{+}\right), 305,291,274,247,230,219,209,185,153,123,105,93,73,55$.
$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}(320.43) \quad$ Calc. $\mathrm{C} 71.2 \quad \mathrm{H} 8.8 \quad$ O $20.0 \% \quad$ Found $\mathrm{C} 71.0 \quad \mathrm{H} 9.0 \quad$ O 20.4%
16. ($2 \mathrm{R}, 3 \mathrm{R}, 5 \mathrm{E}$)-2-(1^{2}-Ethoxyethoxy)-3-methyl-5-heptenol (17). To a solution of $16.5 \mathrm{~g}(51.6 \mathrm{mmol})$ of 16 in 150 ml of $\mathrm{EtOH}, 30 \mathrm{ml}$ of 10 N KOH are added. The mixture is stirred for 90 min at r.t. $\left(20^{\circ}\right)$, the solution diluted with 11 of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with 400 ml of $\mathrm{H}_{2} \mathrm{O}$, and the aq. phase extracted with 400 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined org. phases are dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated: $10.2 \mathrm{~g}(92 \%)$ of 17 colourless oil, $[\alpha]_{\mathrm{D}}^{20}=-30.4^{\circ}$ $\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3400 \mathrm{~m}, 2900 \mathrm{~s}, 1450 \mathrm{~m}, 1385 \mathrm{~m}, 1345 \mathrm{w}, 1135 \mathrm{~s}, 1090 \mathrm{~s}, 1055 \mathrm{~s}, 970 \mathrm{~m}, 840 \mathrm{w} .{ }^{1} \mathrm{H}-$ NMR ($\mathrm{CDCl}_{3}, 360 \mathrm{MHz}, 1: 1$ mixture of diastereomers) $0.87,0.89\left(2 d, J=7,3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(3)\right) ; 1.22,1.24$ ($2 t$, $\left.J=7,3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; 1.36\left(d, J=6,3 \mathrm{H}, 3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 1.66(d, J=6,3 \mathrm{H}, 3 \mathrm{H}-\mathrm{C}(7)) ; 1.83(\mathrm{~m}, 2 \mathrm{H}$, $2 \mathrm{H}-\mathrm{C}(4)) ; 2.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)) ; 3.38\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; 3.47-3.68\left(\mathrm{~m}, 4 \mathrm{H}, 1 / 2 \mathrm{OCH}_{2} \mathrm{CH}_{3}, 2 \mathrm{H}-\mathrm{C}(1)\right.$, $\mathrm{HO}-\mathrm{C}(1)) ; 3.75(m, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)) ; 4.59,4.85\left(2 q, J=5,1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 5.42(m, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(6))$. MS (LR): $216\left(M^{+}\right), 198,185,170,155,149,126,109,95,73,55$.
$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{3}(216.32) \quad$ Calc. $\mathrm{C} 66.6 \quad \mathrm{H} 11.2 \quad$ O $22.2 \% \quad$ Found $\mathrm{C} 65.3 \quad \mathrm{H} 10.8 \quad$ O 22.6%

[^6]17. ($2 \mathrm{R}, 3 \mathrm{R}, 5 \mathrm{E}$)-2-(l'-Ethoxyethoxy)-3-methyl-5-heptenal (18). A solution of 6.3 g (29.2 mmol) of $\mathbf{1 7}$ in 120 ml of DMSO/benzene $1: 1$ is stirred for 2 h at r.t. with $1.66 \mathrm{~g}(1.12 \mathrm{ml}, 14.6 \mathrm{mmol})$ of TFA, $2.4 \mathrm{ml}(2.35 \mathrm{~g}$, $29.7 \mathrm{mmol})$ of pyridine and $18.5 \mathrm{~g}(89.67 \mathrm{mmol})$ of dicyclohexylcarbodiimide. The precipitate formed is filtered off using a suction filter, the filtrate taken up in 500 ml of $\mathrm{Et}_{2} \mathrm{O}$ and washed with 250 ml of $\mathrm{H}_{2} \mathrm{O}$. The aq. phase is extracted with 300 ml of $\mathrm{Et}_{2} \mathrm{O}$, the org. phase dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue is chromatographed on silica gel using $0.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}: 5.9 \mathrm{~g}(95 \%)$ of 18 , colourless oil. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3020 \mathrm{w}, 2955 \mathrm{~m}$, $2920 \mathrm{~m}, 2850 \mathrm{~m}, 2800 \mathrm{w}, 2700 \mathrm{w}, 1730 \mathrm{~s}$ (CHO), $1450 \mathrm{w}, 1380 \mathrm{~m}, 1340 \mathrm{w}, 1125 \mathrm{~s}, 1090 \mathrm{~s}, 1085 \mathrm{~s}, 1055 \mathrm{~s}, 970 \mathrm{~s}, 940 \mathrm{w}$, $920 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 360 \mathrm{MHz}, 1: 1\right.$ mixture of diastereomers $): 0.92,0.97\left(2 d, J=7,3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(3)\right) ; 1.15$, $1.18\left(2 t, J=7,3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; 1.34,1.36\left(2 d, J=5,3 \mathrm{H}, 3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 1.65(d, J=6,3 \mathrm{H}, 3 \mathrm{H}-\mathrm{C}(7) ; 1.96$ ($m, 2 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}(4)$); $2.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)) ; 3.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; 3.70,3.85(2 \mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)) ; 4.61$, $4.79(2 q, J=5, \mathrm{H}-\mathrm{C}(3)) ; 5.36,5.48(2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(6)) ; 9.61,9.63(2 d, J=4,3,1 \mathrm{H}, \mathrm{H}-\mathrm{C}(1))$.
$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{3}(214.30) \quad \text { Calc. C } 67.2 \quad \mathrm{H} 10.3 \quad \mathrm{O} 22.4 \% \quad \text { Found C } 66.9 \quad \mathrm{H} 10.4 \quad \mathrm{O} 22.2 \%
$$
18. (2 R, $3 \mathrm{R}, 5 \mathrm{E}$)-2-Hydroxy-3-methyl-5-heptenal (19). To a solution of 1.7 g (7.95 mmol) of 18 in 20 ml of THF, 1.0 ml of 1 N HCl are added. The mixture is allowed to stand for $1 / 1 / 2 \mathrm{~h}$ at r.t., then shaken with 100 ml of $\mathrm{H}_{2} \mathrm{O}$ and 200 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the org. phase separated and washed again with 100 ml of $\mathrm{H}_{2} \mathrm{O}$. The aq. phases are extracted with 200 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined org. phases dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated: $1.07 \mathrm{~g}(95 \%)$ of 19, colourless oil. The product is used immediately for the subsequent reaction without further purification.
19. Compound 19 from 14 and Isolation as Aminocyanide 20. A solution of $0.216 \mathrm{~g}(1.5 \mathrm{mmol})$ of 14 in 4 ml of DMSO/benzene $1: 1$ is stirred for 22 h at r.t. with $0.121 \mathrm{~g}(1.53 \mathrm{mmol})$ of pyridine, $87 \mathrm{mg}(0.76 \mathrm{mmol})$ of TFA, and $0.945 \mathrm{~g}(4.59 \mathrm{mmol})$ of dicyclohexylcarbodiimide. Then, $0.580 \mathrm{~g}(4.59 \mathrm{mmol})$ of oxalic acid in 18 ml of $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ 1:5 are added, the mixture is stirred for further $25 \mathrm{~min}, 7 \mathrm{ml}$ of $\mathrm{H}_{2} \mathrm{O}$ are added, and the mixture is again stirred for 15 min . The mixture is filtered, the filtrate diluted with 150 ml of $\mathrm{Et}_{2} \mathrm{O}$, washed with 50 ml of aq. I $\mathrm{NaHCO} \mathrm{Na}_{3}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue is dissolved in 5 ml of $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} 2: 3,0.1 \mathrm{~g}$ $(1.48 \mathrm{mmol})$ of $\mathrm{MeNH}_{2} \cdot \mathrm{HCl}$ and $0.10 \mathrm{~g}(1.53 \mathrm{mmol})$ of KCN are added to the mixture, which is then stirred for 21 h at 20° and then evaporated. The residue is dissolved in 50 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10 \mathrm{ml}$ of $\mathrm{H}_{2} \mathrm{O}$ are added, the $\mathrm{H}_{2} \mathrm{O}$ is alcalinized by addition of a few drops of $1 \mathrm{~N} \mathrm{NaHCO}_{3}$, the $\mathrm{H}_{2} \mathrm{O}$ phase extracted with 20 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined org. phase dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue is dissolved in 50 ml of $\mathrm{Et}_{2} \mathrm{O}$, filtered and chromatographed on 60 g of silica gel using $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}: 0.068 \mathrm{~g}(25 \%$ calc. on 14) 20 as an oil (s. chap. 20).
20. ($2 \mathrm{RS}, 3 \mathrm{R}, 4 \mathrm{R}, 6 \mathrm{E}$)-3-Hydroxy-4-methyl-2-methylamino-6-octenenitrile (20). At $20^{\circ}, 0.52 \mathrm{~g}$ (7.9 mmol) of KCN and $0.54 \mathrm{~g}(7.9 \mathrm{mmol})$ of $\mathrm{MeNH}_{2} \cdot \mathrm{HCl}$ are added with stirring to $1.1 \mathrm{~g}(7.7 \mathrm{mmol})$ of freshly prepared 19 in 50 ml of MeOH . After addition of 7.5 ml of $\mathrm{H}_{2} \mathrm{O}$, the mixture is stirred for 2 h at r.t. and then evaporated to $1 / 2$ of its volume (water-bath temp. $<40^{\circ}$). The concentrate is shaken with 500 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O} 3: 2$, and the separated org, phase is shaken with a further 100 ml of $\mathrm{H}_{2} \mathrm{O}$. The aq. phases are extracted separately using $2 \times 100 \mathrm{ml}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phases are combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue is chromatographed on 100 g of silica gel using $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, to yield $1.15 \mathrm{~g}(82 \%)$ of 20 , which crystallizes from $\mathrm{Et}_{2} \mathrm{O}$ as a diastereomeric mixture, m.p. $106-107^{\circ}$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3665 w, 3600 w, 3400 w, 2950 w, 2910 \mathrm{~m}$, $2855 \mathrm{~m}, 2850 \mathrm{~m}, 1460 \mathrm{~m}, \mathrm{I} 380 \mathrm{~m}, 1150 \mathrm{~m}, 1120 \mathrm{~m}, 1040 \mathrm{~m}, 1010 \mathrm{~m}, 970 \mathrm{~m} .{ }^{\mathrm{I}} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right): 0.94(d, J=7$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(4)\right) ; 1.68(d, J=4,3 \mathrm{H}, 3 \mathrm{H}-\mathrm{C}(8)) ; 1.50-2.50(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{C}(4), 2 \mathrm{H}-\mathrm{C}(5), \mathrm{OH}, \mathrm{NH}) ; 2.60(s$, $\left.3 \mathrm{H}, \mathrm{NCH}_{3}\right) ; 3.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}(2), \mathrm{H}-\mathrm{C}(3)) ; 5.54(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}(6), \mathrm{H}-\mathrm{C}(7))$. $\mathrm{MS}(\mathrm{LR}): 182\left(\mathrm{M}^{\dagger}\right), 167,156$, 140, 126, 95, 70, 55.

$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}(182.27) \quad$ Calc. C 65.9 H 10.0 N 15.4 O $8.8 \% \quad$ Found C 65.7 H $9.9 \quad$ N $15.1 \quad$ O 9.2%

21. (4 RS,5 R)-3-Methyl-5-((I' R, $\left.3^{\prime} \mathrm{E}\right)$ - l^{\prime}-methyl-3'-pentenyl)-2-oxooxazolidine-4-carbonitrile (21). To a solution of 630 mg (3.46 mmol) of 20 in 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ are added $840 \mathrm{mg}(5.2 \mathrm{mmol})$ of $1,1^{1}$-carbonyldiimidazole. The mixture is stirred overnight at r.t., then diluted with 100 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and shaken with 50 ml of $\mathrm{H}_{2} \mathrm{O}$. The aq. phase is extracted with 100 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the org. phase dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue is chromatographed on 110 g of silica gel using $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}: 628 \mathrm{mg}(87 \%)$ of 21 as a $6: 1$ mixture of cis/trans isomers (rel. to ring). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2950 \mathrm{~m}, 2945 \mathrm{~m}, 2885 \mathrm{~m}, 2850 \mathrm{~m}, 1760 \mathrm{~s}, 1440 \mathrm{~m}, 1410 \mathrm{~m}$, $1300 \mathrm{~m}, 1210 \mathrm{~s}, 1140 \mathrm{~m}, 1040 \mathrm{~s}, 970 \mathrm{~s}, 940 \mathrm{w}, 880 \mathrm{w}, 840 \mathrm{w}$. MS (LR): $208\left(\mathrm{M}^{+}\right), 193,163,139,128,101,95,84,69$, 55.

For the separation of the diastereomers, 21 (628 mg) is chromatographed on 150 g of silica gel using 0.5% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}: 88 \mathrm{mg}$ of trans-21 and 532 mg of cis-21. cis-21: m.p. $67-68^{\circ},[\alpha]_{\mathrm{D}}^{20}=-6.3^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}, \operatorname{trans}-21\left(4 R, 5 R, \mathrm{l}^{\prime} R, 3^{\prime} E\right)\right): 0.96\left(d, J=7,3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}\left(\mathrm{l}^{\prime}\right)\right) ; 1.53(d, J=5,3 \mathrm{H}$, $\left.3 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 1.80-2.40\left(m, 3 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right), \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 2.95\left(s, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) ; 4.20(d, J=6,1 \mathrm{H}, \mathrm{H}-\mathrm{C}(4)) ; 4.45$
($t, J=6, \quad 1 \mathrm{H}, \quad \mathrm{H}-\mathrm{C}(5)) ; 5.45\left(\mathrm{~m}, \quad 2 \mathrm{H}, \quad \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), \quad \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right)$. ${ }^{\prime} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}, ~ c i s-21\right.$ $\left(4 S, 5 R, 1^{\prime} R, 3^{\prime} E\right)$): $0.95\left(d, J=7,3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}\left(1^{\prime}\right)\right) ; 1.62\left(d, J=5,3 \mathrm{H}, 3 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 2.18\left(m, 2 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right.$, $\left.\mathrm{H}-\mathrm{C}\left(\mathrm{l}^{\prime}\right)\right) ; 2.96\left(s, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) ; 4.19(t, J=8,1 \mathrm{H}, \mathrm{H}-\mathrm{C}(5)) ; 4.45(d, J=8,1 \mathrm{H}, \mathrm{H}-\mathrm{C}(4)) ; 5.45(m, 2 \mathrm{H}$, $\left.\mathrm{H}-\mathrm{C}\left(3^{\prime}\right), \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right)$.
$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}(208.26) \quad$ Calc. C63.4 H7.7 N 13.5 O $15.4 \% \quad$ Found C 63.2 H 7.9 N $13.4 \quad$ O 15.0%
22. Ethyl ($4 \mathrm{~S}, 5 \mathrm{R}$)-3-Methyl-5-(($\left.I^{\prime} \mathrm{R}, 3^{\prime} \mathrm{E}\right)$ - I^{\prime}-methyl-3'-pentenyl)-2-oxooxazolidine-4-carboximidate (22). To a solution of $0.85 \mathrm{~g}(4.09 \mathrm{mmol})$ of 21 (cis/trans mixture) in 40 ml of $95 \% \mathrm{EtOH}, 1.12 \mathrm{~g}(8.18 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ are added, and the mixture is stirred for 6 h at r.t. The suspension obtained is shaken with 600 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O} 5: 1$, the aq. phase extracted with 300 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined org. phases dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated: $0.940 \mathrm{~g}(90 \%)$ of 22 , colourless oil, $[\alpha]_{\mathrm{D}}^{20}=+15.8^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $3400 w$, $2960-2850 \mathrm{~m}, 1760 \mathrm{~s}, 1670 \mathrm{~m}, 1480 \mathrm{w}, 1460-1430 \mathrm{w}, 1410 \mathrm{~m}, 1395 \mathrm{w}, 1340 \mathrm{w}, 1300-1260 \mathrm{w}, 1230 \mathrm{w}, 1100 \mathrm{~m}, 1050 \mathrm{~m}$, $975 m, 860 \mathrm{w}, 830 \mathrm{w} .{ }^{\mathrm{t}} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 360 \mathrm{MHz} ; 1: 3\right.$ mixture of (E / Z) - or (Z / E)-isomers (rel, to $\left.\mathrm{C}=\mathrm{N}\right)$): $0.96(d$, $J=6,3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}\left(1^{\prime}\right)$); $1.32\left(t, J=6,3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 1.67\left(d, J=5,3 \mathrm{H}, 3 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 1.85,1.95,2.20(3 \mathrm{~m}$, $\left.3 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right), \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 2.83,2.88\left(2 \mathrm{~s}, 3 \mathrm{H}(1: 3), \mathrm{NCH}_{3}\right) ; 3.80(d, J=6,1 \mathrm{H}, \mathrm{H}-\mathrm{C}(4)) ; 4.13(t, J=6,1 \mathrm{H}$, $\mathrm{H}-\mathrm{C}(5)) ; 4.25\left(d d, J=18,6,2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 5.35,5.51\left(2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 7.33,7.39(2 \mathrm{~s}, 1 \mathrm{H}$ (1:3), HN). MS (HR): $254.1649\left(M^{+}, \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}\right.$, calc. 254.1631).
23. Ethyl ($4 \mathrm{~S}, 5 \mathrm{R}$)-3-Methyl-5-(($\left.l^{\prime} \mathrm{R}, 3^{\prime} \mathrm{E}\right)-l^{\prime}$-methyl-3'-pentenyl)-2-oxooxazolidine-4-carboxylate (23). A solution of 0.870 g (3.4 mmol) of 22 in 90 ml of $95 \% \mathrm{EtOH}$ is stirred with 4.5 ml of 1 N HCl for 2 h at $\mathrm{r} . \mathrm{t}$. The resulting solution is adjusted to pH 7 by the addition of 1 N NaHCO 3 and extracted with 400 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ after addition of 200 ml of $\mathrm{H}_{2} \mathrm{O}$. The aq. phase is extracted again with 300 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined org. phase dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue is chromatographed on 200 g of silica gel using $1 \% \mathrm{MeOH} /$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}: 0.830 \mathrm{~g}(95 \%)$ of 23, $[\alpha]_{\mathrm{D}}^{20}=+29.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2930(\mathrm{br}),. 1760 \mathrm{~s}, 1440 \mathrm{~m}, 1400 \mathrm{~m}$ $1210 \mathrm{~m}, 1140 \mathrm{w}, 1040 \mathrm{~m}, 970 \mathrm{~m}, 830 \mathrm{w} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right): 0.95\left(d, J=7,3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}\left(\mathrm{l}^{\prime}\right)\right) ; 1.32(t$, $\left.J=7,3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 1.67\left(d, J=6,3 \mathrm{H}, 3 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 1.83-2.04,2.22\left(2 \mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right), \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 2.92$ $\left(s .3 \mathrm{H}_{,}, \mathrm{NCH}_{3}\right) ; 2.95(d, J=5,1 \mathrm{H}, \mathrm{H}-\mathrm{C}(4)) ; 4.25(t, J=5,1 \mathrm{H}, \mathrm{H}-\mathrm{C}(5)) ; 4.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C} \mathrm{H}_{2} \mathrm{O}\right) ; 5.37$, $5.50\left(2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) . \mathrm{MS}(\mathrm{LR}): 255\left(\mathrm{M}^{+}\right), 241,198,182,138,128,100,84,55$.

$\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{4}(255.317) \quad$ Calc. C 61.2 H 8.3 N 5.5 O $25.1 \% ~ F o u n d ~ C 61.1 \quad$ H $8.5 \quad$ N $5.5 \quad$ O 25.7%

24. (4 S, 5 R$)$-3-Methyl-5-((I' R, 3' E)-I'-methyl-3'-pentenyl)-2-oxooxazolidine-4-carboxylic Acid (24). A solution of 0.680 g (2.67 mmol) of 23 in 35 ml of 1,4 -dioxane is stirred for 1 h at r.t. with 92 ml of 0.1 N KOH The solution is adjusted to pH 2 by the addition of 1 NHCl , extracted twice with 300 mll of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the extract dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue is crystallized from $\mathrm{Et}_{2} \mathrm{O}$ to yield $0.545 \mathrm{~g}(90 \%)$ of 24 in pure enantiomeric form, m.p. $81-82^{\circ},[\alpha]_{\mathrm{D}}^{22}=+33.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3450 \mathrm{~m}, 3200-2500 \mathrm{~s}, 1765 \mathrm{~s}$, $1700 \mathrm{~m}, 1530 \mathrm{w}, 1480 \mathrm{~m}, 1400 \mathrm{~s}, 1330 \mathrm{~m}, 1310 \mathrm{~m}, 1240 \mathrm{~m}, 1215 \mathrm{~m}, 1140 \mathrm{w}, 1095 \mathrm{~m}, 1060 \mathrm{~s}, 1035 \mathrm{~m}, 970 \mathrm{~m}, 925 \mathrm{~m}, 860 \mathrm{w}$, 820s. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right): 0.99\left(d=7,3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}\left(1^{\prime}\right)\right) ; 1.67\left(d, J=7,3 \mathrm{H}, 3 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 1.95(m$, $\left.2 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.25\left(m, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 3.02\left(s, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right) ; 4.04(d, J=5,1 \mathrm{H}, \mathrm{H}-\mathrm{C}(4)) ; 4.38(d d, J=5,6$, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(5)) ; 5.38,5.52\left(2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 8.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}) . \mathrm{MS}(\mathrm{LR}): 227\left(\mathrm{M}^{+}\right), 211,182$, $170,138,128,100,84,68,55$.

$\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{4}(227.26) \quad$ Calc. C 58.1 H $7.5 \quad \mathrm{~N} 6.2$ O $28.2 \% \quad$ Found C 57.9 H $7.6 \quad \mathrm{~N} 6.4 \quad$ O 28.1%

25. (2S, 3 R,4 R,6 E)-3-Hydroxy-4-methyl-2-methylamino-6-octenoic Acid (25). a) Starting from 24. The solution of $172 \mathrm{mg}(0.76 \mathrm{mmol})$ of 24 in 2.0 ml of 2 N KOH is warmed for 3 h at 80°, cooled, adjusted to pH 5 by the addition of 1 N HCl , and evaporated. The residue is taken up in MeOH , filtered through 50 g of Sephadex LH 20 and evaporated. The residue is crystallized from EtOH to yield $144 \mathrm{mg}(94 \%)$ of pure $\mathbf{2 5}$, m.p. $240-241^{\circ}$, $[\alpha]_{\mathrm{D}}^{20}=+13.5^{\circ}\left(c=0.50, \mathrm{H}_{2} \mathrm{O}\right.$ at pH 7 (phosphate buffer Titrisol pH 7.00 from Merck)).
b) Starting from 23. The suspension of $194 \mathrm{mg}(0.76 \mathrm{mmol})$ of $\mathbf{2 3}$ in 4 ml of 2 NKOH is warmed up to 80°, the resulting solution stirred for 3 h at 80°, then cooled to 20°, adjusted to pH 5 by addition of 1 N HCl , and evaporated. The residue is taken up in $\mathrm{H}_{2} \mathrm{O}$, filtered through 7 g of ion exchange resin (BIO-RAD AG 3-X4 ($100-200 \mathrm{mesh}$) in the OH^{-}-form) and evaporated. The residue is crystallized from MeOH to yield 138 mg (90%) of pure 25, m.p. $240-241^{\circ},[\alpha]_{\mathrm{D}}^{20}=+13.0\left(c=0.46, \mathrm{H}_{2} \mathrm{O}\right.$ at pH 7 , s. above). IR (KBr): $3400 \mathrm{~m}, 3200 \mathrm{~m}$, $3025 w, 2960 \mathrm{w}, 2940 \mathrm{w}, 2870 \mathrm{w}, 2750-2300$ (br.), $1615 \mathrm{~s}, 1585 \mathrm{~s}, 1460 \mathrm{~m}, 1450 \mathrm{~m}, 1430 \mathrm{~m}, 1410 \mathrm{~m}, 1380 \mathrm{~s}, 1330 \mathrm{w}$, $1320 w, 1310 w, 1260 w, 1245 w, 1140 \mathrm{~m}, 1110 \mathrm{~m}, 1075 w, 1060 w, 1045 w, 1035 w, 990 w, 970 s, 930 w, 895 w, 850 w, 680 w$. 1R (Nujol): $3200 \mathrm{~m}, 2950-2850 \mathrm{~s}, 2650$ (br.), 2500-2250 (br.), $1620 \mathrm{~s}, 1585 \mathrm{~s}, 1460 \mathrm{~m}, 1445 \mathrm{~m}, 1430 \mathrm{~m}, 1410 \mathrm{~m}, 1380 \mathrm{~s}$, $1330 w, 1320 w, 1310 w, 1290 w, 1260 w, 1245 w, 1140 \mathrm{~m}, 1110 \mathrm{~m}, 1075 \mathrm{w}, 1060 \mathrm{w}, 1045 \mathrm{w}, 1030 \mathrm{~m}, 990 \mathrm{w}, 970 \mathrm{~s}, 930 \mathrm{w}$, $895 w, 850 w, 880 w, 870 w, 850 w, 675 w,{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 20^{\circ} ; 360 \mathrm{MHz}\right): 0.96\left(d, J=8,3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(4)\right) ; 1.67(d$.
$J=6,3 \mathrm{H}, 3 \mathrm{H}-\mathrm{C}(8)) ; 1.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(4)) ; 1.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(5)) ; 2.30(\mathrm{br} . d, J=14,1 \mathrm{H}, \mathrm{H}-\mathrm{C}(5)) ; 2.75$ $\left(s, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right) ; 3.65(d, J=6, \mathrm{H}-\mathrm{C}(2)) ; 3.79(t, J=6,1 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)) ; 5.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}(6), \mathrm{H}-\mathrm{C}(7))$. Irradiation at $1.67 \mathrm{ppm}: 5.50(m, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)) ; 5.85(d, J=15, \mathrm{H}-\mathrm{C}(7))$. Irradiation at $2.30 \mathrm{ppm}: 5.49$ (dd , $J=15,6, \mathrm{H}-\mathrm{C}(6)) ; 1.90(m$ (less complicated), $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(5)) .{ }^{\mathrm{t}} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}, 20^{\circ} ; 360 \mathrm{MHz}\right): 0.82(d$, $\left.J=6,3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(4)\right) ; 1.15(s, 2 \mathrm{H}, \mathrm{OH}, \mathrm{NH}) ; 1.63(d, J=4,3 \mathrm{H}, 3 \mathrm{H}-\mathrm{C}(8)) ; 1.79(m, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}(4)$, $\mathrm{H}-\mathrm{C}(5)) ; 2.28(m, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(5)) ; 2.50\left(s, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right) ; 3.11(d, J=5,1 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)) ; 3.56(t, J=5,1 \mathrm{H}$, $\mathrm{H}-\mathrm{C}(3)) ; 5.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}(6), \mathrm{H}-\mathrm{C}(7))$. ${ }^{\mathrm{l}} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}, 120^{\circ} ; 360 \mathrm{MHz}, 25\right.$ is not stable at $\left.180^{\circ}\right)$: $0.84\left(d, J=6,3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(4)\right) ; 1.63(d, J=4,3 \mathrm{H}, 3 \mathrm{H}-\mathrm{C}(8)) ; 1.78(\mathrm{~m}, \mathrm{I} \mathrm{H}, \mathrm{H}-\mathrm{C}(4)) ; 1.80,2.28(2 d, J=12$, $2 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}(5)) ; 2.44\left(s, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right) ; 3.06(d, J=4,1 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)) ; 3.54(t, J=4,1 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)$) ; 4.40 (br. s, $2 \mathrm{H}, \mathrm{NH}, \mathrm{OH}$); 5.41 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}(6), \mathrm{H}-\mathrm{C}(7))$. MS (LR): $201\left(\mathrm{M}^{+}\right), 156,138,118,89,79,55$.

$$
\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{3}(201.27) \quad \text { Calc. C } 59.7 \quad \mathrm{H} 9.5 \quad \mathrm{~N} 7.0 \quad \text { O } 23.8 \% \quad \text { Found } \mathrm{C} 59.5 \quad \mathrm{H} 9.6 \quad \mathrm{~N} 6.9 \quad \text { O } 24.3 \%
$$

REFERENCES

[1] A. Rüegger, M. Kuhn, H. Lichti, H. R. Loosti, R. Huguenin, C. Quiquerez \& A. von Warthurg, Helv. Chim. Acta 59, 1075 (1976).
[2] T.J. Petcher, H.P. Weher \& A. Rüegger, Helv. Chim. Acta 59, 1480 (1976).
[3] R. Wenger, 'Chemistry of Cyclosporin', in: 'Cyclosporin A', ed. D.J.G. White, pp. 19-34, Elsevier Biomed., Amsterdam 1982.
[4] R.S. Cahn, Ch. Ingold \& V. Prelog, Angew. Chem. 78, 413 (1966); ibid. Int. Ed. 5, 385 (1966).
[5] H.P. Weber, Sandoz Research Labs, unpubl. results, manuscript in preparation.
[6] D. Seebach \& E. Hungerbühler, in: 'Modern Synthetic Methods', ed. R. Scheffold, pp.93-171, Salle + Sauerländer 1980.
[7] E. Erlenmeyer, Biochem. Z. 68, 351 (1915).
[8] A. Collet, M. J. Brienne \& J. Jacques, Bull. Soc. Chim. Fr. 1972, 336.
[9] W.D. Curtis, D. A. Laidler, J.F. Staddart \& G.H. Jones, J. Chem. Soc., Chem. Commun. 1975, 833.
[10] B. Jones, J. Chem. Soc. 1933, 788.
[11] D.A. Seeley \& H. McElwee, J. Org. Chem. 1973, 1691.
[12] R.W. Herr, D. M. Wieland \& C. R. Johnson, J. Am. Chem. Soc. 92, 3813 (1970).
[13] P. De Clercq \& R. Mijngheer, Bull. Soc. Chim. Belg. 87, 495 (1978).
[14] E. Baer \& H.O. L. Fischer, J. Biol. Chem. 128, 463 (1939).
[15] a) R. Wenger, European Patent Nr. 034567 (priority 14.02 .80 CH); b) K. Mori \& H. Iwasawa, Tetrahedron 36, 87 (1980).
[16] M. Schlosser \& K.F. Christmann, Justus Liebigs Ann. Chem. 708, 1 (1967).
[17] J.J. Riehl \& A. Fougerousse, Bull. Soc. Chim. Fr. 1968, 4083.
[18] K. E. Pfitzner \& H.G. Moffatt, J. Am. Chem. Soc. 87, 5561 (1965).
[19] K.E. Pfitzner \& J. G. Moffatt, J. Am. Chem. Soc. 87, 5670 (1965).
[20] A.H. Fenselau \& J. G. Moffatt, J. Am. Chem. Soc. 88, 1762 (1966).
[21] E. Hungerbühler \& D. Seebach, Helv. Chim. Acta 64, 687 (1981).
[22] S. J. Selikson \& D. S. Watt, Tetrahedron Lett. 35, 3029 (1974).
[23] E. Cossement, R. Binamé \& L. Ghosez. Tetrahedron Lett. 12, 997 (1974).
[24] K. Sakai, J. Ide \& O. Oda, Tetrahedron Lett. 34, 3021 (1975).
[25] M.P. Cooke, Jr., Tetrahedron Lett. 24, 2199 (1979).
[26] A.W.M. Lee, V.S. Martin, S. Masamune, K. B. Sharpless \& F.J. Walker, J. Am. Chem. Soc. 104, 3515 (1982).
[27] T. Kaneko \& T. Inui, Bull. Chem. Soc. Jpn. 35, 1145 (1962).
[28] A. Schanzer, L. Somekh \& D. Buttina, J. Org. Chem. 44, 3967 (1979).

[^0]: ${ }^{1}$) Part of this work has been presented at the 'Seventh Symposium on Synthesis in Organic Chemistry' organized by the Royal Society of Cambridge Perkin Division in Oxford, 21-23 July 1981, and at an 'International Symposium on Cyclosporin A' held at Cambridge (England) from 16-18 September 1981.
 ${ }^{2}$) Previously reported as MeC 9 , for details see [3].
 ${ }^{3}$) The new abbreviation MeBmt is, in accordance with conventional practice, to be understood for an amino acid of the L-configuration. The Me represents the N-methylated residue of Bmt as MeLeu means N-methyl-L-leucine. Bmt is the abbreviation of ($4 R$)-4-((E)-2-butenyl-4-methyl-L-threoninc.
 ${ }^{4}$) The name cyclosporine is used for the cyclic undecapeptide that has been named initially [1] 'cyclosporin A^{\prime} ', see [3] (previously, the name cyclosporin was proposed for the structure of 'cyclosporin A'; now that the USAN name cyclosporine has been accepted in the USA, this name will be adopted for this basic structure).

[^1]: ${ }^{5}$) For the use of tartaric acid as an ideal source of chiral building blocks for syntheses, see the recently published review by Seebach \& Hungerbühler [6]

[^2]: ${ }^{6}$) For similar cases of 5 -membered ring acetonide formation, which is favoured over the 6 -membered ring acetonide see [13] [14] (formation of the 5-membered ring acetonide from 1,2,4-butanetriol and of 1,2:5,6-O-diisopropylidene-D-mannitol from D-mannitol, respectively).

[^3]: ${ }^{7}$) After the synthesis of $\mathbf{2 5}$ was completed (see the total synthesis of cyclosporine by Wenger [15a], Mori \& Iwasawa [15b] published their synthesis of δ-multistriatin using the same intermediate $\mathbf{1 0}$, which they synthesized by a related route.
 ${ }^{8}$) In the $360-\mathrm{MHz}$ NMR spectrum in CDCl_{3} no trace of (Z)-isomer was observed. The (Z)-isomer obtained by working at room temperature during the Wittig reaction absorbs at $0.87\left(\mathrm{CH}_{3}-\mathrm{C}(5)\right) ; 1.37$ and 1.40 $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 1.62(3 \mathrm{H}-\mathrm{C}(1)) ; 1.80,2.0$, and $2.24(2 \mathrm{H}-\mathrm{C}(4)$ and $\mathrm{H}-\mathrm{C}(5)) ; 3.6$ and $3.9(\mathrm{H}-\mathrm{C}(6)$ and $2 \mathrm{H}-\mathrm{C}(7)) ; 5.45(\mathrm{H}-\mathrm{C}(2)$ and $\mathrm{H}-\mathrm{C}(3))$.

[^4]: $\left.{ }^{y}\right) \quad C f$. the isomerization of glucose to fructose and [17].
 ii) The formation of the α-hydroxy ketone $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{COCH}_{2} \mathrm{OH}$ (probably by isomerization of 19) and of other by-products could not be avoided.

[^5]: ${ }^{11}$) Analogous didehydroimines have already been isolated as dimethyl (tert-butyl)silyl derivatives, for details s. [22].
 ${ }^{12}$) As examples: transformation of the compounds a, b, c, d, and \mathbf{e} into the trans products ai [23], bi [24], ci [25], di [26], and ei [27], [28], respectively.

[^6]: ${ }^{13}$) The (2Z)-derivative, obtained by working at r.t., shows the $3 \mathrm{H}-\mathrm{C}(1)$ at 1.62 ppm .

